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A short and high yielding enantioselective synthesis of (�)-bestatin, a naturally occurring aminopepti-
dase inhibitor, is described via L-proline-catalyzed asymmetric a-amination of 3-phenylpropionaldehyde
as the key reaction. The methodology also involves a Pd-catalyzed intramolecular cyclization of an allylic
acetate giving a trans-oxazoline in a highly diastereoselective manner (dr > 14:1).

� 2008 Elsevier Ltd. All rights reserved.
The aminopeptidases are a group of exopeptidases that specifi-
cally cleave polypeptide chains at the amino terminus. (�)-Bestatin
(1), a naturally occurring small peptide containing a non-proteino-
genic a-hydroxy-b-amino acid at the N-terminus of the peptide
chain, is an aminopeptidase inhibitor1 that exhibits immunostim-
ulatory activity as well as cytotoxic activity. It is used clinically
as an oral medication for the treatment of cancer,2 and shows
potential as an anti-inflammatory agent and for the treatment of
HIV.3 The stereochemistry of the hydroxyl as well as the amino
groups in (�)-bestatin (1) plays a vital role in the biological activity
of the molecule. Thus, controlling the stereochemistry at the C-2
and C-3 stereogenic centers for the introduction of the desired
(2S,3R) configuration of the N-terminal component becomes
important. A variety of stereoselective methods for the formation
of b-amino-a-hydroxy acids have been reported, including amin-
ohydroxylation,4 reduction of a-keto acid derivatives,5 nucleo-
philic addition to chiral aminoaldehydes,6 olefins,7 imines,8 ring
opening procedures on chiral epoxides,9 halocyclocarbamation of
allylamines,10 and transformation of chiral sugars11 and b-amino
acids.12 Due to its promising biological activity and intriguing
structure, more than 25 syntheses of bestatin (1) have been repor-
ted,6a,13 many of which utilized unnatural D-phenylalanine as a chi-
ral starting material.5,6b–e,10,13c,14 As part of our program15 directed
toward expanding the synthetic utility of L-proline-catalyzed
asymmetric a-amination, we report a short, efficient method for
the enantioselective synthesis of (�)-bestatin (1) starting from
3-phenylpropionaldehyde (Scheme 1).

Proline, an abundant, inexpensive amino acid available in both
enantiomeric forms, has emerged as a practical and versatile
organocatalyst.16 Asymmetric a-amination of aldehydes using
proline as the catalyst represents17 a burgeoning field of synthetic
efforts toward synthesizing chiral building blocks, such as a-amino
acids and alcohols. Also, the Pd-catalyzed intramolecular cycliza-
ll rights reserved.
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tion of benzamides via a p-allyl palladium complex is an elegant
method for the synthesis of highly functionalized compounds, par-
ticularly when chirality transfer is involved.18 We envisaged that
trans-oxazoline 8, obtainable via Pd-catalyzed cyclization of allylic
acetate 7, would be a suitable chiral building block for the synthe-
sis of (�)-bestatin (1).

Our synthesis of (�)-bestatin (1) started with the a-amination
of 3-phenyl-propionaldehyde using List’s protocol.17a Accordingly,
3-phenylpropionaldehyde 2 was subjected to a-amination with
dibenzyl azodicarboxylate in the presence of L-proline (10 mol %)
to produce an aminoaldehyde, which upon in situ reduction with
NaBH4 afforded the protected aminoalcohol 319 in 92% yield and
95% ee.20 Aminoalcohol 3 was then subjected to hydrogenolysis
[over Raney nickel,21 H2 (60 psi), 25 �C] to give the free amine,
which was protected (BzCl, Et3N, THF, 25 �C) as its benzamide 4
in 70% yield over two steps. Oxidation of alcohol 4 with Dess–Mar-
tin periodinane gave the corresponding aldehyde 5, which on reac-
tion with vinylmagnesium bromide in THF at 0 �C afforded allylic
alcohol 6 as a 1.1:1 mixture of syn/anti isomers (determined by
1H NMR analysis) in 85% yield. Acetylation of 6 (Ac2O, Py, DMAP,
CH2Cl2, 25 �C) gave the secondary allylic acetate 7 in 98% yield.
The Pd-catalyzed intramolecular cyclization22 of allylic acetate 7
using Pd(PPh3)4 and K2CO3 in CH3CN proceeded readily to give
the desired trans-oxazoline 823 as an inseparable mixture of diaste-
reomers (dr > 14:1, as determined by 1H and 13C NMR spectral
analysis) in 79% yield. Oxidative degradation of the vinylic group
in 8 was carried out as indicated in the following sequence of reac-
tions: (i) the olefin function in 8 was initially dihydroxylated
(OsO4, NMO); (ii) the diol so formed was subsequently cleaved
on treatment with NaIO4,

24 which gave the corresponding
aldehyde; (iii) the crude aldehyde, being labile, was immediately
oxidized (NaClO2, NaH2PO4),25 without purification, to the corre-
sponding carboxylic acid 9. Acid 9 was readily condensed with
the benzyl ester of L-leucine (DCC, HOBT in THF)26 to provide the
amide 10 in 70% yield over the four steps. Finally, catalytic
hydrogenolysis [20% Pd(OH)2/C, H2 (75 psi), MeOH/AcOH (9:1),
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Scheme 1. Reagents and conditions: (a) dibenzyl azodicarboxylate, L-proline (10 mol %), CH3CN, 0–25 �C, 3 h then NaBH4, EtOH, 0 �C, 30 min, 92%, 95% ee; (b) (i) H2 (60 psi),
Raney nickel, MeOH, AcOH, 25 �C, 20 h; (ii) benzoyl chloride, Et3N, THF, 0–25 �C, 30 min, 70% (over two steps); (c) Dess–Martin periodinane, CH2Cl2, 25 �C, 2 h; (d)
CH2@CHMgBr, THF, 0–25 �C, 1 h, 85% (over two steps); (e) Ac2O, Py, DMAP, CH2Cl2, 25 �C, 12 h, 98%; (f) Pd(PPh3)4 (5 mol %), K2CO3, CH3CN, reflux, 24 h, 79%, dr > 14:1; (g) (i)
OsO4, 50% aq NMO, acetone/H2O (9:1), 25 �C, 12 h; (ii) NaIO4, CH2Cl2, 25 �C, 10 min; (iii) NaClO2, NaH2PO4, t-BuOH, H2O, 25 �C, 2 h; (h) L-leucine benzyl ester�TsOH, DCC,
HOBT, THF, 0–25 �C, 16 h, 70% (over 4 steps); (i) 20% Pd(OH)2/C, H2 (75 psi), MeOH/AcOH (9:1), 25 �C, 36 h, 72%.
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25 �C, 36 h]22b of 10 furnished (-)-bestatin (1) in 72% yield {½a�25
D

�13.5 (c 0.5, 1 N HCl); lit.26 ½a�25
D �14.3 (c 0.5, 1 N HCl)}. The spec-

troscopic data of 1 were in full agreement with those reported in
the literature.26

In conclusion, we have described a short synthetic route to (�)-
bestatin 1 with an overall yield of 22%, which includes a successful
application of L-proline-catalyzed asymmetric a-amination of an
aldehyde to give the corresponding aminoalcohol in 95% ee. The
protocol also demonstrates the synthetic utility of the Pd-catalyzed
intramolecular cyclization of benzamide 7 to give trans-oxazoline 8
in a highly diastereoselective fashion.
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